Researchers have for the first time visualized the growth of ‘nanoscale’ chemical complexes in real time, demonstrating that processes in liquids at the scale of one-billionth of a meter can be documented as they happen.
Researchers have uncovered physical mechanisms allowing the manipulation of magnetic information with heat. These new phenomena rely on the transport of thermal energy, in contrast to the conventional application of magnetic fields, providing a new, and highly desirable way to manipulate magnetization at the nanoscale.
Work from a research team is seeking to produce synthetic particles that mimic the tiny packets of melanin found in feathers. These tiny packets of synthetic melanin produce structural color, like in a bird’s feather, when they are packed into layers. Structural color occurs through the interaction of light with materials that have patterns on a tiny scale, which reflect light to make some wavelengths brighter and others darker.
Photoinduced chemical reactions are responsible for many fundamental processes and technologies, from energy conversion in nature to micro fabrication by photo-lithography. Scientists have now monitored the chemical processes during a photographic exposure at the level of individual nanoscale grains in real-time.
Two young researchers have developed an ultracompact highly sensitive nanomechanical sensor for analyzing the chemical composition of substances and detecting biological objects, such as viral disease markers, which appear when the immune system responds to incurable or hard-to-cure diseases, including HIV, hepatitis, herpes, and many others. The sensor will enable doctors to identify tumor markers, whose presence in the body signals the emergence and growth of cancerous tumors.
Researchers have developed a fast, simple process for making platinum ‘nano-raspberries’ — microscopic clusters of nanoscale particles of the precious metal. The berry-like shape is significant because it has a high surface area, which is helpful in the design of catalysts. Even better news for industrial chemists: the researchers figured out when and why the berry clusters clump into larger bunches of ‘nano-grapes.’
Researchers have created wearable sensor patches that detect harmful UV radiation and dangerous, toxic gases such as hydrogen and nitrogen dioxide.
Origami, the Japanese art of paper folding, can be used to create beautiful birds, frogs and other small sculptures. Now an engineer says the technique can be applied to building batteries, too.
Many cancer patients survive treatment only to have a recurrence within a few years. Recurrences and tumor spreading are likely due to cancer stem cells that can be tough to kill with conventional cancer drugs. But now researchers have designed nanoparticles that specifically target these hardy cells to deliver a drug. The nanoparticle treatment worked far better than the drug alone in mice.
A new way has been uncovered to measure the conductivity of electronic components at optical frequencies for high-speed, nanoscale device components ultimately as small as a single molecule.