Chemists have developed a major improvement to capture and retain energy from sunlight, where the stored energy can last dramatically longer than current solar technology allows — up to several weeks, instead of the microseconds found in today’s rooftop solar panels.
A relatively inexpensive and simple way to split water into hydrogen and oxygen has been developed using a new electrodeposition method. The findings could lead to a sizable increase in the amount of hydrogen available for fuel usage, scientists say.
Using a method they invented for joining disparate elemental layers into a stable material with uniform, predictable properties, researchers are testing an array of new combinations that may vastly expand the options available to create faster, smaller, more efficient energy storage, advanced electronics and wear-resistant materials.
Using a hybrid silica sol-gel material and self-assembled monolayers of a common fatty acid, researchers have developed a new capacitor dielectric material that provides an electrical energy storage capacity rivaling certain batteries, with both a high energy density and high power density.